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ABSTRACT

RF error statistics for power, voltage,
and phase are presented for an error
component which is coherently related
to a desired signal. The error
component is assumed to have a constant
magnitude and a phase distribution
which is equally likely and uniformly
distributed from 0 to 360°. The
statistics which result have non-zero
mean values for power and voltage
errors and the standard deviation of
the errors differ significantly from
those projected from Gaussian
statistics.

INTRODUCTION

The accuracy which which RF
measurements can be made is a
fundamental ‘assessment in microwave
applications. Such accuracy
assessments are typically addressed
through an error budget which combines
individual error component values.
These individual error components may
be divided into two classes, errors
which are coherently related to the
desired signal component and errors
which are incoherently related to the
desired signal. The desired signal can
be one used for test purposes or a
signal which is operationally used. The
class of coherently related errors is
based on errors which are generated by
the desired signal but degrade the
performance of the system; examples of
this class of error components include
VSWR interaction components and
multipath errors. The most common
example of incoherent errors is thermal
noise, and error budgets reflecting the
Gaussian statistics associated with
additive white noise are commonly
used. The statistics for coherent
errors have had little attention, and
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the simple expressions for the
statistics of power, voltage, and phase
for the coherent errors will be
derived.

The theoretical basis between coherent
and incoherent error statistics also
provides a contrast between the two
types of error components. The
statistics for incoherent errors are
derived under the assumption of a large
number of statistically similar
components having a zero mean error.
The Central Limit Theorem is then
invoked to obtain a Gaussian
distribution for the collection with
zero mean error (Ref. 1). In contrast
with the assumptions for incoherent
errors, the coherent error case has a
limited number of components with
significant magnitude rather than a
large number of statistically similar
components. The resulting statistics
for the coherent case can have non-zero
mean values and standard deviations
which differ significantly from those
projected on the basis of Gaussian
statistics.

DERIVATION OF THE STATISTICS

The simple phasor diagram, shown in
Fig. 1, provides an easy visualization
for the coherent error analysis. The
true value of the desired signal is
represented by unity at a 0° phase
angle, while the error component has a
relative amplitude a and phase o with
respect to the true value. The
distribution for the phase of the error
component will be assumed to be equally
likely and uniformly distributed from 0
to 360°; this assumption for the

phase distribution is similar to the
incoherent case. These assumptions are
used to obtain the statistics for the
total power, voltage and phase. Since
the true value of the power and voltage
is unity and the true value of the
phase is 0°, the statistics of the
errors can be obtained by subtracting
the true value from the statistics of
the total value.
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Fig. 1. Phasor Diagram

The statistics derived here are based
on a CW variation of the desired
signal; more general forms of desired
signals can be treated by weighting the
amplitude of the error component with
the autocorrelation of the desired
signal with the appropriate time

delay. The peak-to-peak error
excursions in the coherent case have
been generally used, but the derivation
of mean and standard deviation values
of the measured quantities are believed
to be original in this work. This
statistical analysis is necessary in
cases in which the phase of the error
component is unknown; when both the
amplitude and phase of the error
component is known, the error can be
determined deterministically. Indeed,
this calibration of error sources is
the basis of the accuracy which can be
achieved with modern network

analyzers. This statistical analysis
fulfills a role in determining
measurement accuracy in cases in which
the calibration can not be done and in
operational systems in which the phase
of the error components may be
time-varying. The statistical analysis
is also a useful way to determine the
component performance requirements
needed to fulfill the overall system
accuracy requirements.

A. Power Statistics

The statistics for the power can be
easily derived in closed form.
Referring to Fig. 1, the power can be
expressed as

P=1+ a2 + 2a cosa (1)

The familiar peak-to-peak variation of
the power is obtained by setting a to
0° and 180°. The mean power level

is given by o

Ep = (1/27r)f P da (2)
0

=1 + a2

The variance of the power is given by
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Vp = (1/2m)

27
(P - Ep)2da (3)
2 9

= 2a

and the corresponding standard
deviation is given by

op = N2 a (4)

B. Voltage Statistics

The resultant voltage, as seen from
Fig. 1, is given by the square root of
the power expression given in eq. 1.
The mean value of the voltage is given

by 2T
Ey = (1/2772/ V da (5)

= (2/mX1+a) E(4a/(1+a)?)

where E(X) is the complete elliptic
integral of the second kind. While the
elliptic integrals are tabulated
functions, a simple analytic
approximation would be useful for
calculation purposes. Several
polynominal approximations for the
elliptic function were investigated. A
convenient form for the mean value of
the voltage is given by

Ey ~ 1 +a2/4 + a%/e4 (6)

The mean error in the voltage is
obtained by subtracting 1 from the
expected value of the resultant
voltage.

The variance of the voltage can be
derived easily. The expected value of
the square of the voltage is identical
to the expected value of the power
given in eq. 2. The variance of the
voltage is given by

Vy = Ep - (Ey)?2 (7)
=1+ a?
- ((2/m) (1+a) E(4a/(1+a)?))?

Again a simple approximate expression
for the standard deviation of the
voltage errors is desirable for
computational purposes. A series

approximation is given by

oy =~(a/~N2) (1-3a2/16)1/2 (8)



C. Phase Statistics

The error in the phase,
Fig. 1, is given by

referring to

€ = tan'l(asina/(1+acosa) (9)
The mean phase error can be shown to
equal 0 by observing the symmetry of
the integrand. The variance of the
phase error can ge evaluated from
Ve
v, = (1/2;7)_/(5 )2 da
0
This integral is difficult to evaluate
in closed form. If the integrand is
expanded in a Taylor's series, the
following expression results

(10)

V¢::a2/2 + at/s +...

(11)
The standard deviation of the phase
error is obtained from the square root
of this expression.

D. Numerical Results

Numerical values for the preceding
analysis are presented and the
numerical accuracy of the series
approximations is quantified. For
convenience, the expressions for the
statistics are gathered in Table I,
where the = signs indicate the series
approximations used in the comparison.
The error statistics for power and
voltage are also plotted in their
logarithmic form. The peak-to-peak
error fluctuations, the rms error
spread about the mean value and the
mean error values are presented in
Figs. 2 and 3 for power and voltage
error statistics, respectively.
Similarly, the peak-to-peak and rms
statistics for phase errors are
presented in Fig. 4.

The numerical accuracy for the series
approximations is determined in the
following way. The value a = 0.5 (-6
dB) was used as a reference level for
the series approximations. The
statistics for the voltage errors were
computed from the elliptic integral
values in the IMSL subroutine, ‘and
compared with the series expression.

TABLE I
POWER
Mean a2
Standard Deviation N2 a
Gaussian (+50) =0.4a

Standard Deviation

The errors in the series expressions
were 1.6% and 0.1% for the mean and
standard deviation of the voltage
errors, respectively. Since the phase
errors statistics cannot be expressed
in closed form, the accuracy of the
series approximation was compared to a
numerical integration for the phase
error; the error in the series
approximation in this case was 0.5%.
The accuracy of the series expressions
improves for a < 0.5.

The comparison between the statistical
values derived for the coherent error
case with Gaussian statistics was done
in the following manner. In contrast
with zero~mean Gaussian statistics, the
power and voltage error statistics have
non-zero mean values. The standard
deviations for Gaussian statistics were
derived by assuming the peak-to-peak
variations of the power, voltage and
phase values represented + 5¢
variations, a common assumption. The
resulting values are presented in Table
I; in all cases, the standard
deviations projected on the basis of
Gaussian statistics are significantly
lower than those derived for the
coherent error case.

CONCLUSIONS

The error statistics for coherently
related components have been derived.
In contrast with values projected from
Gaussian statistics, non-zero mean
errors occur for power and voltage
errors, and the standard deviation
values are significantly higher. More
details on the numerical accuracy and
example applications may be found in
Ref. 2.
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Fig. 4 Phase Error Statistics
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