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ABSTRACT

RF error statistics for power, voltage,

and phase are presented for an error

component which is coherently related

to a desired signal. The error

component is assumed to have a constant

magnitude and a phase distribution

which is equally likely and uniformly

distributed from O to 360°. The
statistics which result have non-zero

mean values for power and voltage
errors and the standard deviation of

the errors differ significantly from
those projected from Gaussian
statistics.

INTRODUCTION

‘The accuracy which which RF
measurements can be made is a

fundamental ‘assessment in microwave

applications. Such accuracy
assessments are typically addressed
through an error budget which combines
individual error component values.
‘These individual error components may
be divided into two classes, errors

which are coherently related to the

desired signal component and errors

which are incoherently related to the

desired signal. The desired signal can

be one used for test purposes or a

signal which is operationally used. The

class of coherently related errors is

based on errors which are generated by

the desired signal but degrade the
performance of the system; examples of

this class of error components include
VSWR interaction components and

multipath errors. The most common
example of incoherent errors is thermal

noise, and error budgets reflecting the

Gaussian statistics associated with

additive white noise are commonly
used. The statistics for coherent

errors have had little attention, and
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the simple expressions for the
statistics of power, voltage, and phase
for the coherent errors will be
derived.

The theoretical basis between ccbherent
and incoherent error statistics also
provides a contrast between the two
types of error components. The
statistics for incoherent error?, are
derived under the assumption of a large
number of statistically similar
components having a zero mean error.
The Central Limit Theorem is then
invoked to obtain a Gaussian
distribution for the collection with
zero mean error (Ref. 1) . In ccmtrast
with the assumptions for incoherent
errors, the coherent error case has a
limited number of components with
significant magnitude rather than a
large number of statistically similar
components. The resulting statistics
for the coherent case can have non-zero
mean values and standard deviations
which differ significantly from those
projected on the basis of GaUSS;Lan

statistics.

DERIVATION OF THE STATISTICS

The simple phasor diagram, shown in
Fig. 1, provides an easy visualization
for the coherent error analysis,, The
true value of the desired signalL is
represented by unity at a 0° phase
angle, while the error component has a
relative amplitude a and phase c~ with
respect to the true value. The
distribution for the phase of the error
component will be assumed to be equally
likely and uniformly distributeci from O
to 360°; this assumption for the
phase distribution is similar tc) the
incoherent case. These assumptions are
used to obtain the statistics fc)r the
total power, voltage and phase. Since
the true value of the power and voltage
is unity and the true value of the
phase is 0°, the statistics of the
errors can be obtained by subtracting
the true value from the statistics of

the total value.
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Fig. 1. Phasor Diagram

The statistics derived here are based
on a CW variation of the desired
signal; more general forms of desired
signals can be treated by weighting the
amplitude of the error component with
the aukoco~relation of the desired
signal with the appropriate time
delay. The peak-to-peak error
excursions in the coherent case have
been generally used, but the derivation
of mean and standard deviation values
of the measured quantities are believed
to be original in this work. This
statistical analysis is necessary in
cases in which the phase of the error
component is unknown; when both the
amplitude and phase of the error
component is known, the error can be
determined deterministically. Indeed,
this calibration of error sources is
the basis of the accuracy which can be
achieved with modern network
analyzers. This statistical analysis
fulfills a role in determining
measurement accuracy in cases in which
the calibration can not be done and in
operational systems in which the phase
of the error components may be
time-varying. The statistical analysis
is also a useful way to determine the
component performance requirements
needed to fulfill the overall system
accuracy requirements.

A. Power Statistics

The statistics for the power can be
easily derived in closed form.
Referring to Fig. It the power can be
expressed as

p = 1 + a2 + 2a cosa (1)

The familiar peak-to-peak variation of
the power is obtained by setting ci to
0° and 180°. The mean power level
is given by

.2 T

Ep = (1//27r)J P da (2)

o.

2n’

~
Vp = (1/27T) (P - Ep) 2da (3)

. ~a2 o

and the corresponding standard
deviation is given by

(4)

B. Voltage Statistics

The resultant voltage, as seen from
Fig. 1, is given by the square root of
the power expression given in eq. 1.
The mean value of the voltage is given
by

[

27T

Ev = (1/27T) V de (5)

= (2/7rT(l+a) E(4a/(l+a)2)

where E( X) is the complete elliptic
integral of the second kind. While the
elliptic integrals are tabulated
functions, a simple analytic
approximation would be useful for
calculation purposes. Several
polynomial approximations for the
elliptic function were investigated. A
convenient form for the mean value of
the voltage is given by

Ev z ~ +a2/4 + a4/64 (6)

The mean error in the voltage is
obtained by subtracting 1 from the
expected value of the resultant
voltage.

The variance of the voltage can be
derived easily. The expected value of
the square of the voltage is identical
to the expected value of the power
given in eq. 2. The variance of the
voltage is given by

Vv = Ep - (Ev)
2 (7)

=l+a2

-((2/7r)(l+a) E(4a/(l+a)2))2

Again a simple approximate expression
for the standard deviation of the
voltage errors is desirable for
computational purposes. A series

approximation is given by

‘v %(a/&?) (1-3a2/16)1/2 (8)=l+a2

The variance of the power is given by
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C. Phase Statistics

The error in the phase, referring to

Fig. 1, is given by

c = tan-~ (asin@(l+acos@) (9)

The mean phase error can be shown ‘co

equal O by observing the symmetry of

the integrand. The variance of the

phase error can ~~ evaluated from

J
(c)2da

‘9
= (1/27r) (lo)

This integral i: difficult to evaluate
in closed form. If the integrand is

expanded in a Taylorts series, the
following expression results

‘v ~a2/2 + a4/8 +... (11)

The standard deviation of the phase

error is obtained from the square root

of this expression.

D. Numerical Results

Numerical values for the preceding

analysis are presented and the
numerical accuracy of the series

approximations is quantified. For
convenience, the expressions for the

statistics are gathered in Table I,

where the z signs indicate the series

approximations used in the comparison.

The error statistics for power and

voltage are also plotted in their

logarithmic form. The peak-to-pealc

error fluctuations, the rms error

spread about the mean value and the
mean error values are presented in
Figs. 2 and 3 for power and voltage
error statistics, respectively.
Similarlyr the peak-to-peak and rms
statistics for phase errors are
presented in Fig. 4.

The numerical accuracy for the series
approximations is determined in the
following way. The value a = 0.5 (-6
dB) was used as a reference level for
the series approximations. The
statistics for the voltage errors were
computed from the elliptic integral

values in the IIvISL subroutine, “and
compared with the series expression.

The errors in the series expressions
were 1.6% and O.1% for the mean and
standard deviation of the voltage
errors, respectively. Since the phase
errors statistics cannot be expressed
in closed form, the accuracy of the
series approximation was compared to a
numerical integration for the phase
error; the error in the series
approximation in this case was 0.5%.
The accuracy of the series expressions
improves for a < 0.5.

The comparison between the statistical
values derived for the coherent error
case with Gaussian statistics was done
in the following manner. In contrast
with zero-mean Gaussian statistics, the
power and voltage error statistics have
non-zero mean values. The standard
deviations for Gaussian statistics were
derived by assuming the peak-to-peak
variations of the power, voltage and
phase values represented k 5r

variations, a common assumption. The
resulting values are presented inl ‘Table
1; in all cases, the standard
deviations projected on the basis of
Gaussian statistics are sicmificantlv
lower than those derived f;r
coherent error case.

CONCLUSIONS

the -

The error statistics for coherently
related components have been derived.
In contrast with values projecteci from
Gaussian statistics, non-zero mean
errors occur for power and voltage
errors, and the standard deviatic]n
values are significantly higher. More
details on the numerical accuracy and
example applications may be founcl in
Ref. 2.
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TABLE I ERROR

POWER

Mean a2

Standard Deviation 42

Gaussian (t5a ) =0.

Standard Deviation

a

4a
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VOLTAGE

z a2/4

z a/<2

zO.2a
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Fig. 2 Power Error Statistics
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Fig. 3 Voltage Error Statistics
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Fig. 4 Phase Error Statistics
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